888 research outputs found

    Scattering and delay time for 1D asymmetric potentials: the step-linear and the step-exponential cases

    Full text link
    We analyze the quantum-mechanical behavior of a system described by a one-dimensional asymmetric potential constituted by a step plus (i) a linear barrier or (ii) an exponential barrier. We solve the energy eigenvalue equation by means of the integral representation method, classifying the independent solutions as equivalence classes of homotopic paths in the complex plane. We discuss the structure of the bound states as function of the height U_0 of the step and we study the propagation of a sharp-peaked wave packet reflected by the barrier. For both the linear and the exponential barrier we provide an explicit formula for the delay time \tau(E) as a function of the peak energy E. We display the resonant behavior of \tau(E) at energies close to U_0. By analyzing the asymptotic behavior for large energies of the eigenfunctions of the continuous spectrum we also show that, as expected, \tau(E) approaches the classical value for E -> \infty, thus diverging for the step-linear case and vanishing for the step-exponential one.Comment: 14 pages, 10 figure

    Semi-regular continued fractions and an exact formula for the moments of the Minkowski question mark function

    Full text link
    This paper continues investigations on the integral transforms of the Minkowski question mark function. In this work we finally establish the long-sought formula for the moments, which does not explicitly involve regular continued fractions, though it has a hidden nice interpretation in terms of semi-regular continued fractions. The proof is self-contained and does not rely on previous results by the author.Comment: 8 page

    Modelling the habitat of the endangered Carpentarian Grasswren (Amytornis dorotheae): The importance of spatio-temporal habitat availability in a fire prone landscape

    Get PDF
    Species distribution modelling (SDM), a tool increasingly adopted to quantify geographic range size, often predicts species’ distributions as static. However, habitat availability may exhibit spatial and temporal variation when dynamic processes, such as fire, determine suitability. Static SDM approaches may not satisfactorily represent this dynamic process. We investigated the potential use of SDM to quantify dynamic habitat availability by applying the MaxEnt SDM technique to model the habitat of the Carpentarian Grasswren (Amytornis dorotheae), an endangered Australian passerine dependent on long unburnt vegetation in a fire prone system. By adjusting a typical SDM approach to incorporate the dynamic nature of fire, we modelled the spatio-temporal variation of suitable habitat over 12 years and compared it to a static modelling approach. Incorporating fire as a dynamic process increased the importance of the fire variable to models (from 35% permutation importance) and improved model performance, as evaluated by the AUC using cross-validation. Our dynamic model revealed sizeable temporal variation in the area and spatial arrangement of suitable habitat that was not apparent in the static model. This result may partly solve the mystery of why the species occurs as widely separated populations despite the presence of seemingly suitable intervening habitat. In areas where the species is no longer found, habitat availability was less consistent due to frequent fire, and fire refugia was more limited and isolated, when compared to sites with recent records. These results demonstrate that, when compared to a static approach, a dynamic SDM approach can lead to improved understanding of dynamic ecological processes, and their impact on a species

    Special functions associated to a certain fourth order differential equation

    Full text link
    We develop a theory of "special functions" associated to a certain fourth order differential operator Dμ,ν\mathcal{D}_{\mu,\nu} on R\mathbb{R} depending on two parameters μ,ν\mu,\nu. For integers μ,ν1\mu,\nu\geq-1 with μ+ν2N0\mu+\nu\in2\mathbb{N}_0 this operator extends to a self-adjoint operator on L2(R+,xμ+ν+1dx)L^2(\mathbb{R}_+,x^{\mu+\nu+1}dx) with discrete spectrum. We find a closed formula for the generating functions of the eigenfunctions, from which we derive basic properties of the eigenfunctions such as orthogonality, completeness, L2L^2-norms, integral representations and various recurrence relations. This fourth order differential operator Dμ,ν\mathcal{D}_{\mu,\nu} arises as the radial part of the Casimir action in the Schr\"odinger model of the minimal representation of the group O(p,q)O(p,q), and our "special functions" give KK-finite vectors

    Sharp spectral stability estimates via the Lebesgue measure of domains for higher order elliptic operators

    Full text link
    We prove sharp stability estimates for the variation of the eigenvalues of non-negative self-adjoint elliptic operators of arbitrary even order upon variation of the open sets on which they are defined. These estimates are expressed in terms of the Lebesgue measure of the symmetric difference of the open sets. Both Dirichlet and Neumann boundary conditions are considered

    Resonant Magnetic Vortices

    Full text link
    By using the complex angular momentum method, we provide a semiclassical analysis of electron scattering by a magnetic vortex of Aharonov-Bohm-type. Regge poles of the SS-matrix are associated with surface waves orbiting around the vortex and supported by a magnetic field discontinuity. Rapid variations of sharp characteristic shapes can be observed on scattering cross sections. They correspond to quasibound states which are Breit-Wigner-type resonances associated with surface waves and which can be considered as quantum analogues of acoustic whispering-gallery modes. Such a resonant magnetic vortex could provide a new kind of artificial atom while the semiclassical approach developed here could be profitably extended in various areas of the physics of vortices.Comment: 6 pages, 7 figure

    Transfinite thin plate spline interpolation

    Full text link
    Duchon's method of thin plate splines defines a polyharmonic interpolant to scattered data values as the minimizer of a certain integral functional. For transfinite interpolation, i.e. interpolation of continuous data prescribed on curves or hypersurfaces, Kounchev has developed the method of polysplines, which are piecewise polyharmonic functions of fixed smoothness across the given hypersurfaces and satisfy some boundary conditions. Recently, Bejancu has introduced boundary conditions of Beppo Levi type to construct a semi-cardinal model for polyspline interpolation to data on an infinite set of parallel hyperplanes. The present paper proves that, for periodic data on a finite set of parallel hyperplanes, the polyspline interpolant satisfying Beppo Levi boundary conditions is in fact a thin plate spline, i.e. it minimizes a Duchon type functional

    Exact Fourier expansion in cylindrical coordinates for the three-dimensional Helmholtz Green function

    Full text link
    A new method is presented for Fourier decomposition of the Helmholtz Green Function in cylindrical coordinates, which is equivalent to obtaining the solution of the Helmholtz equation for a general ring source. The Fourier coefficients of the Helmholtz Green function are split into their half advanced+half retarded and half advanced-half retarded components. Closed form solutions are given for these components in terms of a Horn function and a Kampe de Feriet function, respectively. The systems of partial differential equations associated with these two-dimensional hypergeometric functions are used to construct a fourth-order ordinary differential equation which both components satisfy. A second fourth-order ordinary differential equation for the general Fourier coefficent is derived from an integral representation of the coefficient, and both differential equations are shown to be equivalent. Series solutions for the various Fourier coefficients are also given, mostly in terms of Legendre functions and Bessel/Hankel functions. These are derived from the closed form hypergeometric solutions or an integral representation, or both. Numerical calculations comparing different methods of calculating the Fourier coefficients are presented

    An optimal series expansion of the multiparameter fractional Brownian motion

    Full text link
    We derive a series expansion for the multiparameter fractional Brownian motion. The derived expansion is proven to be rate optimal.Comment: 21 pages, no figures, final version, to appear in Journal of Theoretical Probabilit
    corecore